3.3.7 \(\int \sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^2 \, dx\) [207]

3.3.7.1 Optimal result
3.3.7.2 Mathematica [C] (verified)
3.3.7.3 Rubi [A] (verified)
3.3.7.4 Maple [A] (verified)
3.3.7.5 Fricas [C] (verification not implemented)
3.3.7.6 Sympy [F]
3.3.7.7 Maxima [F]
3.3.7.8 Giac [F]
3.3.7.9 Mupad [F(-1)]

3.3.7.1 Optimal result

Integrand size = 25, antiderivative size = 105 \[ \int \sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^2 \, dx=-\frac {14 a^2 (e \cos (c+d x))^{3/2}}{15 d e}+\frac {14 a^2 \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)}}-\frac {2 (e \cos (c+d x))^{3/2} \left (a^2+a^2 \sin (c+d x)\right )}{5 d e} \]

output
-14/15*a^2*(e*cos(d*x+c))^(3/2)/d/e-2/5*(e*cos(d*x+c))^(3/2)*(a^2+a^2*sin( 
d*x+c))/d/e+14/5*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellip 
ticE(sin(1/2*d*x+1/2*c),2^(1/2))*(e*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)
 
3.3.7.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.03 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.63 \[ \int \sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^2 \, dx=-\frac {8\ 2^{3/4} a^2 (e \cos (c+d x))^{3/2} \operatorname {Hypergeometric2F1}\left (-\frac {7}{4},\frac {3}{4},\frac {7}{4},\frac {1}{2} (1-\sin (c+d x))\right )}{3 d e (1+\sin (c+d x))^{3/4}} \]

input
Integrate[Sqrt[e*Cos[c + d*x]]*(a + a*Sin[c + d*x])^2,x]
 
output
(-8*2^(3/4)*a^2*(e*Cos[c + d*x])^(3/2)*Hypergeometric2F1[-7/4, 3/4, 7/4, ( 
1 - Sin[c + d*x])/2])/(3*d*e*(1 + Sin[c + d*x])^(3/4))
 
3.3.7.3 Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 3157, 3042, 3148, 3042, 3121, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a \sin (c+d x)+a)^2 \sqrt {e \cos (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (a \sin (c+d x)+a)^2 \sqrt {e \cos (c+d x)}dx\)

\(\Big \downarrow \) 3157

\(\displaystyle \frac {7}{5} a \int \sqrt {e \cos (c+d x)} (\sin (c+d x) a+a)dx-\frac {2 \left (a^2 \sin (c+d x)+a^2\right ) (e \cos (c+d x))^{3/2}}{5 d e}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7}{5} a \int \sqrt {e \cos (c+d x)} (\sin (c+d x) a+a)dx-\frac {2 \left (a^2 \sin (c+d x)+a^2\right ) (e \cos (c+d x))^{3/2}}{5 d e}\)

\(\Big \downarrow \) 3148

\(\displaystyle \frac {7}{5} a \left (a \int \sqrt {e \cos (c+d x)}dx-\frac {2 a (e \cos (c+d x))^{3/2}}{3 d e}\right )-\frac {2 \left (a^2 \sin (c+d x)+a^2\right ) (e \cos (c+d x))^{3/2}}{5 d e}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7}{5} a \left (a \int \sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {2 a (e \cos (c+d x))^{3/2}}{3 d e}\right )-\frac {2 \left (a^2 \sin (c+d x)+a^2\right ) (e \cos (c+d x))^{3/2}}{5 d e}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {7}{5} a \left (\frac {a \sqrt {e \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{\sqrt {\cos (c+d x)}}-\frac {2 a (e \cos (c+d x))^{3/2}}{3 d e}\right )-\frac {2 \left (a^2 \sin (c+d x)+a^2\right ) (e \cos (c+d x))^{3/2}}{5 d e}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7}{5} a \left (\frac {a \sqrt {e \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{\sqrt {\cos (c+d x)}}-\frac {2 a (e \cos (c+d x))^{3/2}}{3 d e}\right )-\frac {2 \left (a^2 \sin (c+d x)+a^2\right ) (e \cos (c+d x))^{3/2}}{5 d e}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {7}{5} a \left (\frac {2 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {2 a (e \cos (c+d x))^{3/2}}{3 d e}\right )-\frac {2 \left (a^2 \sin (c+d x)+a^2\right ) (e \cos (c+d x))^{3/2}}{5 d e}\)

input
Int[Sqrt[e*Cos[c + d*x]]*(a + a*Sin[c + d*x])^2,x]
 
output
(7*a*((-2*a*(e*Cos[c + d*x])^(3/2))/(3*d*e) + (2*a*Sqrt[e*Cos[c + d*x]]*El 
lipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]])))/5 - (2*(e*Cos[c + d*x])^ 
(3/2)*(a^2 + a^2*Sin[c + d*x]))/(5*d*e)
 

3.3.7.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3148
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[(-b)*((g*Cos[e + f*x])^(p + 1)/(f*g*(p + 1))), x] + 
 Simp[a   Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x] && 
 (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])
 

rule 3157
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[(-b)*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + 
f*x])^(m - 1)/(f*g*(m + p))), x] + Simp[a*((2*m + p - 1)/(m + p))   Int[(g* 
Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, 
g, m, p}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 0] && NeQ[m + p, 0] && Integers 
Q[2*m, 2*p]
 
3.3.7.4 Maple [A] (verified)

Time = 4.64 (sec) , antiderivative size = 188, normalized size of antiderivative = 1.79

method result size
default \(-\frac {2 a^{2} e \left (24 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-24 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+40 \left (\sin ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-21 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-40 \left (\sin ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+10 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{15 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e +e}\, d}\) \(188\)
parts \(\frac {2 a^{2} \sqrt {e \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, e \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-e \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {e \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}\, d}+\frac {4 a^{2} \sqrt {e \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, e \left (4 \left (\cos ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-8 \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+5 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5 \sqrt {-e \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {e \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}\, d}-\frac {4 a^{2} \left (e \cos \left (d x +c \right )\right )^{\frac {3}{2}}}{3 d e}\) \(363\)

input
int((a+a*sin(d*x+c))^2*(e*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
-2/15/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)*a^2*e*(24*sin 
(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1 
/2*c)+40*sin(1/2*d*x+1/2*c)^5+6*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-21 
*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(c 
os(1/2*d*x+1/2*c),2^(1/2))-40*sin(1/2*d*x+1/2*c)^3+10*sin(1/2*d*x+1/2*c))/ 
d
 
3.3.7.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.06 \[ \int \sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^2 \, dx=\frac {21 i \, \sqrt {2} a^{2} \sqrt {e} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 21 i \, \sqrt {2} a^{2} \sqrt {e} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - 2 \, {\left (3 \, a^{2} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 10 \, a^{2} \cos \left (d x + c\right )\right )} \sqrt {e \cos \left (d x + c\right )}}{15 \, d} \]

input
integrate((a+a*sin(d*x+c))^2*(e*cos(d*x+c))^(1/2),x, algorithm="fricas")
 
output
1/15*(21*I*sqrt(2)*a^2*sqrt(e)*weierstrassZeta(-4, 0, weierstrassPInverse( 
-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 21*I*sqrt(2)*a^2*sqrt(e)*weierstr 
assZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) 
- 2*(3*a^2*cos(d*x + c)*sin(d*x + c) + 10*a^2*cos(d*x + c))*sqrt(e*cos(d*x 
 + c)))/d
 
3.3.7.6 Sympy [F]

\[ \int \sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^2 \, dx=a^{2} \left (\int \sqrt {e \cos {\left (c + d x \right )}}\, dx + \int 2 \sqrt {e \cos {\left (c + d x \right )}} \sin {\left (c + d x \right )}\, dx + \int \sqrt {e \cos {\left (c + d x \right )}} \sin ^{2}{\left (c + d x \right )}\, dx\right ) \]

input
integrate((a+a*sin(d*x+c))**2*(e*cos(d*x+c))**(1/2),x)
 
output
a**2*(Integral(sqrt(e*cos(c + d*x)), x) + Integral(2*sqrt(e*cos(c + d*x))* 
sin(c + d*x), x) + Integral(sqrt(e*cos(c + d*x))*sin(c + d*x)**2, x))
 
3.3.7.7 Maxima [F]

\[ \int \sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^2 \, dx=\int { \sqrt {e \cos \left (d x + c\right )} {\left (a \sin \left (d x + c\right ) + a\right )}^{2} \,d x } \]

input
integrate((a+a*sin(d*x+c))^2*(e*cos(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(e*cos(d*x + c))*(a*sin(d*x + c) + a)^2, x)
 
3.3.7.8 Giac [F]

\[ \int \sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^2 \, dx=\int { \sqrt {e \cos \left (d x + c\right )} {\left (a \sin \left (d x + c\right ) + a\right )}^{2} \,d x } \]

input
integrate((a+a*sin(d*x+c))^2*(e*cos(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(e*cos(d*x + c))*(a*sin(d*x + c) + a)^2, x)
 
3.3.7.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^2 \, dx=\int \sqrt {e\,\cos \left (c+d\,x\right )}\,{\left (a+a\,\sin \left (c+d\,x\right )\right )}^2 \,d x \]

input
int((e*cos(c + d*x))^(1/2)*(a + a*sin(c + d*x))^2,x)
 
output
int((e*cos(c + d*x))^(1/2)*(a + a*sin(c + d*x))^2, x)